Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM

نویسندگان

  • Shuo Li
  • Thomas Fevens
  • Adam Krzyzak
  • Song Li
چکیده

A general automatic method for clinical image segmentation is proposed. Tailored for the clinical environment, the proposed segmentation method consists of two stages: a learning stage and a clinical segmentation stage. During the learning stage, manually chosen representative images are segmented using a variational level set method driven by a pathologically modelled energy functional. Then a window-based feature extraction is applied to the segmented images. Principal component analysis (PCA) is applied to these extracted features and the results are used to train a support vector machine (SVM) classifier. During the clinical segmentation stage, the input clinical images are classified with the trained SVM. By the proposed method, we take the strengths of both machine learning and variational level set while limiting their weaknesses to achieve automatic and fast clinical segmentation. Both chest (thoracic) computed tomography (CT) scans (2D and 3D) and dental X-rays are used to test the proposed method. Promising results are demonstrated and analyzed. The proposed method can be used during preprocessing for automatic computer aided diagnosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

Region Based Image Fusion Using SVM

This paper presents a novel fusion approach using PCA merger based on multiscale decomposition (MSD), combined with region segmentation and support vector machine (SVM), the result is a high spatial resolution multispectral image from a high resolution panchromatic (Pan) image and low resolution multispectral (Ms) images. Principal components analysis (PCA) fusion technique is one of typical fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005